Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2).

نویسندگان

  • Suisheng Zhang
  • Peter Hemmerich
  • Frank Grosse
چکیده

The telomeric repeat binding factor 2 (TRF2) specifically recognizes TTAGGG tandem repeats at chromosomal ends. Unexpectedly immunofluorescence studies revealed a prominent nucleolar localization of TRF2 in human cells, which appeared as discrete dots with sizes similar to those present in the nucleoplasm. The TRF2 dots did not overlap with dots stemming from the upstream binding factor (UBF) or the B23 protein. After treatment with a low concentration of actinomycin D (0.05 microg/ml), TRF2 remained in the nucleolus, although this condition selectively inhibited RNA polymerase I and led to a relocalization of UBF and B23. TRF2 was prominent in the nucleolus at G0 and S but seemed to diffuse out of the nucleolus in G2 phase. During mitosis TRF2 dispersed from the condensed chromosomes and returned to the nucleolus at cytokinesis. Treatment with low doses of actinomycin D delayed the release of TRF2 from the nucleolus as cells progressed from G2 phase into mitosis. With actinomycin D present TRF2 was detected in discrete foci adjacent to UBF in prophase, while in metaphase a complete overlap between TRF2 and UBF was observed. TRF2 was present in DNase-insensitive complexes of nucleolar extracts, whereas DNA degradation disrupted the protein-DNA complexes consisting of Ku antigen and B23. Following treatment with actinomycin D some of the mitotic cells displayed chromosome end-to-end fusions. This could be correlated to the actinomycin D-suppressed relocalization of TRF2 from the nucleolus to the telomeres during mitosis. These results support the view that the nucleolus may sequester TRF2 and thereby influences its telomeric functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Rap1 modulates TRF2 attraction to telomeric DNA

More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding F...

متن کامل

Nucleolar Organization, Ribosomal DNA Array Stability, and Acrocentric Chromosome Integrity Are Linked to Telomere Function

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucle...

متن کامل

Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it

Telomeric repeat binding factor 2 (TRF2) folds human telomeres into loops to prevent unwanted DNA repair and chromosome end-joining. The N-terminal basic domain of TRF2 (B-domain) protects the telomeric displacement loop (D-loop) from cleavage by endonucleases. Repressor activator protein 1 (Rap1) binds TRF2 and improves telomeric DNA recognition. We found that the B-domain of TRF2 stabilized t...

متن کامل

The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter.

Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms' tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube format...

متن کامل

Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression

Telomeric repeat binding factor 2 (TRF2) is essential for telomere maintenance and has been implicated in DNA damage response and aging. Telomere dysfunction induced by TRF2 inhibition can accelerate cellular senescence in human fibroblasts. While previous work has demonstrated that a variety of factors can regulate TRF2 expression transcriptionally and post-translationally, whether microRNAs (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2004